Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients)

Visit the National Academies Press online and register for...

- Instant access to free PDF downloads of titles from the
 - NATIONAL ACADEMY OF SCIENCES
 - NATIONAL ACADEMY OF ENGINEERING
 - INSTITUTE OF MEDICINE
 - NATIONAL RESEARCH COUNCIL
- 10% off print titles
- Custom notification of new releases in your field of interest
- Special offers and discounts

Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book

Copyright © National Academy of Sciences. All rights reserved.
Summary

This is one volume in a series of reports that presents dietary reference values for the intake of nutrients by Americans and Canadians. This report provides Dietary Reference Intakes (DRIs) for energy and the macronutrients carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. While the role of ethanol in macronutrient metabolism and energy is briefly discussed in this report, its role in chronic diseases will be reviewed in a future DRI report.

The development of DRIs expands and replaces the series of reports called Recommended Dietary Allowances (RDAs) published in the United States and Recommended Nutrient Intakes (RNIs) in Canada. A major impetus for the expansion of this review is the growing recognition of the many uses to which RDAs and RNIs have been applied and the growing awareness that many of these uses require the application of statistically valid methods that depend on reference values other than RDAs. This report includes a review of the roles that macronutrients are known to play in traditional deficiency diseases as well as chronic diseases.

The overall project is a comprehensive effort undertaken by the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes of the Food and Nutrition Board, Institute of Medicine, the National Academies, in collaboration with Health Canada (see Appendix B for a description of the overall process and its origins). This study was requested by the Federal Steering Committee for Dietary Reference Intakes, which is coordinated by the Office of Disease Prevention and Health Promotion of the U.S. Department of Health and Human Services, in collaboration with Health Canada.
Major new approaches and findings in this report include the following:

- The establishment of Estimated Energy Requirements (EER) at four levels of energy expenditure (Chapter 5).
- Recommendations for levels of physical activity associated with a normal body mass index range (Chapter 12).
- The establishment of RDAs for dietary carbohydrate (Chapter 6) and protein (Chapter 10).
- The development of the definitions Dietary Fiber, Functional Fiber, and Total Fiber (Chapter 7).
- The establishment of Adequate Intakes (AI) for Total Fiber (Chapter 7).
- The establishment of AIs for linoleic and \(\alpha \)-linolenic acids (Chapter 8).
- Acceptable Macronutrient Distribution Ranges as a percent of energy intake for fat, carbohydrate, linoleic and \(\alpha \)-linolenic acids, and protein (Chapter 11).
- Research recommendations for information needed to advance the understanding of human energy and macronutrient requirements and the adverse effects associated with intake of higher amounts (Chapter 14).

APPORACH FOR SETTING DIETARY REFERENCE INTAKES

The scientific data used to develop Dietary Reference Intakes (DRIs) have come from observational and experimental studies. Studies published in peer-reviewed journals were the principal source of data. Life stage and gender were considered to the extent possible, but the data did not provide a basis for proposing different requirements for men, for pregnant and nonlactating women, and for nonpregnant and nonlactating women in different age groups for many of the macronutrients. Three of the categories of reference the values—the Estimated Average Requirement (EAR), Recommended Dietary Allowance (RDA), and Estimated Energy Requirement (EER)—are defined by specific criteria of nutrient adequacy; the third, the Tolerable Upper Intake Level (UL), is defined by a specific endpoint of adverse effect, when one is available (see Box S-1). In all cases, data were examined closely to determine whether a functional endpoint could be used as a criterion of adequacy. The quality of studies was examined by considering study design; methods used for measuring intake and indicators of adequacy; and biases, interactions, and confounding factors.

Although the reference values are based on data, the data were often scanty or drawn from studies that had limitations in addressing the various questions that confronted the panel. Therefore, many of the questions raised about the requirements for, and recommended intakes of, these macronutrients cannot be answered fully because of inadequacies in the present database. Apart from studies of overt deficiency diseases, there is a
SUMMARY

BOX S-1
Dietary Reference Intakes

Recommended Dietary Allowance (RDA): the average daily dietary nutrient intake level sufficient to meet the nutrient requirement of nearly all (97 to 98 percent) healthy individuals in a particular life stage and gender group.

Adequate Intake (AI): the recommended average daily intake level based on observed or experimentally determined approximations or estimates of nutrient intake by a group (or groups) of apparently healthy people that are assumed to be adequate—used when an RDA cannot be determined.

Tolerable Upper Intake Level (UL): the highest average daily nutrient intake level that is likely to pose no risk of adverse health effects to almost all individuals in the general population. As intake increases above the UL, the potential risk of adverse effects may increase.

Estimated Average Requirement (EAR): the average daily nutrient intake level estimated to meet the requirement of half the healthy individuals in a particular life stage and gender group.\(^a\)

\(^a\) In the case of energy, an Estimated Energy Requirement (EER) is provided. The EER is the average dietary energy intake that is predicted to maintain energy balance in a healthy adult of a defined age, gender, weight, height, and level of physical activity consistent with good health. In children and pregnant and lactating women, the EER is taken to include the needs associated with the deposition of tissues or the secretion of milk at rates consistent with good health.

dearth of studies that address specific effects of inadequate intakes on specific indicators of health status, and a research agenda is proposed (see Chapter 14). The reasoning used to establish the values is described for each nutrient in Chapters 5 through 10. While the various recommendations are provided as single-rounded numbers for practical considerations, it is acknowledged that these values imply a precision not fully justified by the underlying data in the case of currently available human studies.

Except for fiber, the scientific evidence related to the prevention of chronic degenerative disease was judged to be too nonspecific to be used as the basis for setting any of the recommended levels of intake for the nutrients. The indicators used in deriving the EARs, and thus the RDAs, are described below.
Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients)

http://www.nap.edu/catalog.php?record_id=10490

4 DIETARY REFERENCE INTAKES

NUTRIENT FUNCTIONS AND THE INDICATORS USED TO ESTIMATE REQUIREMENTS

Energy is required to sustain the body’s various functions, including respiration, circulation, physical work, and protein synthesis. This energy is supplied by carbohydrates, proteins, fats, and alcohol in the diet. The energy balance of an individual depends on his or her dietary energy intake and energy expenditure. The Estimated Energy Requirement (EER) is defined as the average dietary energy intake that is predicted to maintain energy balance in a healthy adult of a defined age, gender, weight, height, and level of physical activity, consistent with good health (Table S-1).

In children and pregnant and lactating women, the EER is taken to include the needs associated with the deposition of tissues or the secretion of milk at rates consistent with good health. While EERs can be estimated for four levels of activity from the equations provided, the active physical activity level is recommended to maintain health.

Carbohydrates (sugars and starches) provide energy to cells in the body, particularly the brain, which is a carbohydrate-dependent organ. An Estimated Average Requirement (EAR) for carbohydrate is established based on the average amount of glucose utilized by the brain. The Recommended Dietary Allowance (RDA) for carbohydrate is set at 130 g/d for adults and children (Table S-2). There was insufficient evidence to set a daily intake of sugars or added sugars that individuals should aim for.

Dietary Fiber is defined as nondigestible carbohydrates and lignin that are intrinsic and intact in plants. Functional Fiber is defined as isolated, nondigestible carbohydrates that have been shown to have beneficial physiological effects in humans. Total Fiber is the sum of Dietary Fiber and Functional Fiber. Viscous fibers delay the gastric emptying of ingested foods into the small intestine, which can result in a sensation of fullness. This delayed emptying effect also results in reduced postprandial blood glucose concentrations. Viscous fibers can also interfere with the absorption of dietary fat and cholesterol, as well as the enterohepatic recirculation of cholesterol and bile acids, which may result in reduced blood cholesterol concentrations. An Adequate Intake (AI) for Total Fiber is set at 38 and 25 g/d for men and women ages 19 to 50, respectively (Table S-3).

Fat is a major source of fuel energy for the body and aids in the absorption of fat-soluble vitamins and other food components such as carotenoids. Because the percent of energy that is consumed as fat can vary greatly while still meeting daily energy needs, neither an AI nor EAR is set for adults (the AI for infants is given in Table S-4). Saturated fatty acids, monounsaturated fatty acids, and cholesterol are synthesized by the body and have no known beneficial role in preventing chronic diseases, and thus are not required in the diet. Therefore, no AI, EAR, or RDA is set. The n-6
SUMMARY

TABLE S-1 Criteria and Dietary Reference Intake Values for Energy by Active Individuals by Life Stage Groupa

<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Criterion</th>
<th>Active PAL EERb (kcal/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>0 through 6 mo</td>
<td>Energy expenditure plus energy deposition</td>
<td>570</td>
</tr>
<tr>
<td>7 through 12 mo</td>
<td>Energy expenditure plus energy deposition</td>
<td>743</td>
</tr>
<tr>
<td>1 through 2 y</td>
<td>Energy expenditure plus energy deposition</td>
<td>1,046</td>
</tr>
<tr>
<td>3 through 8 y</td>
<td>Energy expenditure plus energy deposition</td>
<td>1,742</td>
</tr>
<tr>
<td>9 through 13 y</td>
<td>Energy expenditure plus energy deposition</td>
<td>2,279</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>Energy expenditure plus energy deposition</td>
<td>3,152</td>
</tr>
<tr>
<td>> 18 y</td>
<td>Energy expenditure</td>
<td>3,067c</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Criterion</th>
<th>Active PAL EERb (kcal/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 through 18 y</td>
<td>Adolescent female EER plus change in Total Energy Expenditure (TEE)</td>
<td>2,368 (16 y)</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>1st trimester plus pregnancy energy deposition</td>
<td>2,708 (16 y)</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>2nd trimester plus pregnancy energy deposition</td>
<td>2,820 (16 y)</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>3rd trimester plus pregnancy energy deposition</td>
<td>2,855c (19 y)</td>
</tr>
</tbody>
</table>

Lactation

<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Criterion</th>
<th>Active PAL EERb (kcal/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 through 18 y</td>
<td>Adolescent female EER plus milk energy output minus weight loss</td>
<td>2,698 (16 y)</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>1st 6 mo</td>
<td>2,698 (16 y)</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>2nd 6 mo</td>
<td>2,768 (16 y)</td>
</tr>
<tr>
<td>19 through 50 y</td>
<td>Adult female EER plus milk energy output minus weight loss</td>
<td>2,733c (19 y)</td>
</tr>
<tr>
<td>19 through 50 y</td>
<td>1st 6 mo</td>
<td>2,733c (19 y)</td>
</tr>
<tr>
<td>19 through 50 y</td>
<td>2nd 6 mo</td>
<td>2,803c (19 y)</td>
</tr>
</tbody>
</table>

For healthy active Americans and Canadians. Based on the cited age, an active physical activity level, and the reference heights and weights cited in Table 1-1. Individualized EERs can be determined by using the equations in Chapter 5.

b PAL = Physical Activity Level, EER = Estimated Energy Requirement. The intake that meets the average energy expenditure of individuals at the reference height, weight, and age (see Table 1-1).

c Subtract 10 kcal/d for males and 7 kcal/d for females for each year of age above 19 years.

A polyunsaturated fatty acid, linoleic acid, is an essential fatty acid. A deficiency of n-6 polyunsaturated fatty acids is characterized by rough and scaly skin, dermatitis, and an elevated eicosatrienoic acid:arachidonic acid (triene:tetraene) ratio. The AI for linoleic acid is based on the median
TABLE S-2 Criteria and Dietary Reference Intake Values for Carbohydrate by Life Stage Group

<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Criterion</th>
<th>EAR<sup>a</sup> (g/d)</th>
<th>RDA<sup>b</sup> (g/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 through 6 mo</td>
<td>Average content of human milk</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>7 through 12 mo</td>
<td>Average intake from human milk plus complementary foods</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>1 through 3 y</td>
<td>Extrapolation from adult data</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>4 through 8 y</td>
<td>Extrapolation from adult data</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>9 through 13 y</td>
<td>Extrapolation from adult data</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>Extrapolation from adult data</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>> 18 y</td>
<td>Brain glucose utilization</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Adolescent female EAR plus fetal brain glucose utilization</td>
<td>135</td>
<td>175</td>
</tr>
<tr>
<td>Lactation</td>
<td>Adult female EAR plus fetal brain glucose utilization</td>
<td>135</td>
<td>175</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>Adolescent female EAR plus average human milk content of carbohydrate</td>
<td>160</td>
<td>210</td>
</tr>
<tr>
<td>19 through 50 y</td>
<td>Adult female EAR plus average human milk content of carbohydrate</td>
<td>160</td>
<td>210</td>
</tr>
</tbody>
</table>

^a EAR = Estimated Average Requirement. The intake that meets the estimated nutrient needs of half the individuals in a group.

^b RDA = Recommended Dietary Allowance. The intake that meets the nutrient need of almost all (97–98 percent) individuals in a group.

^c AI = Adequate Intake: the observed average or experimentally determined intake by a defined population or subgroup that appears to sustain a defined nutritional status, such as growth rate, normal circulating nutrient values, or other functional indicators of health. The AI is used if sufficient scientific evidence is not available to derive an EAR. For healthy infants receiving human milk, the AI is the mean intake. **The AI is not equivalent to an RDA.**
TABLE S-3 Criteria and Dietary Reference Intake Values for Total Fiber by Life Stage Group

<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Criterion</th>
<th>AI<sup>a</sup> (g/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 through 6 mo</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
<td>ND<sup>b</sup> ND</td>
</tr>
<tr>
<td>7 through 12 mo</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
<td>ND ND</td>
</tr>
<tr>
<td>1 through 3 y</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
<td>19 19</td>
</tr>
<tr>
<td>4 through 8 y</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
<td>25 25</td>
</tr>
<tr>
<td>9 through 13 y</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
<td>31 26</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
<td>38 26</td>
</tr>
<tr>
<td>19 through 30 y</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
<td>38 25</td>
</tr>
<tr>
<td>31 through 50 y</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
<td>38 25</td>
</tr>
<tr>
<td>51 through 70 y</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
<td>30 21</td>
</tr>
<tr>
<td>> 70 y</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
<td>30 21</td>
</tr>
</tbody>
</table>

continued
TABLE S-3 Continued

<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnancy</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>28</td>
</tr>
<tr>
<td>19 through 50 y</td>
<td>28</td>
</tr>
<tr>
<td>Lactation</td>
<td>Intake level shown to provide the greatest protection against coronary heart disease (14 g/1,000 kcal) × median energy intake level (kcal/1,000 kcal/d)</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>29</td>
</tr>
<tr>
<td>19 through 50 y</td>
<td>29</td>
</tr>
</tbody>
</table>

\(a\) AI = Adequate Intake. Based on 14 g/1,000 kcal of required energy. The AI is the observed average or experimentally determined intake by a defined population or subgroup that appears to sustain a defined nutritional status, such as growth rate, normal circulating nutrient values, or other functional indicators of health. The AI is used if sufficient scientific evidence is not available to derive an Estimated Average Requirement (EAR). For healthy infants receiving human milk, the AI is the mean intake. **The AI is not equivalent to a Recommended Dietary Allowance (RDA).**

\(b\) ND = not determined.

intake of linoleic acid by different life stage and gender groups in the United States, where the presence of \(n\)-6 polyunsaturated fatty acid deficiency is nonexistent. The AI for linoleic acid is 17 and 12 g/d for men and women 19 through 50 years of age, respectively (Table S-5). \(n\)-3 Polyunsaturated fatty acids play an important role as structural membrane lipids, particularly in nerve tissue and the retina of the eye. These fatty acids also modulate the metabolism of \(n\)-6 polyunsaturated fatty acids and thereby influence the balance of \(n\)-6 and \(n\)-3 fatty acid-derived eicosanoids. The AI is based on the median intakes of \(\alpha\)-linolenic acid in the United States.
SUMMARY

TABLE S-4 Criteria and Dietary Reference Intake Values for Total Fat by Life Stage Group

<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Criterion</th>
<th>AI<sup>a</sup> (g/d)</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 through 6 mo</td>
<td>Average consumption of total fat from human milk</td>
<td>31</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>7 through 12 mo</td>
<td>Average consumption of total fat from human milk and complementary foods</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>1 through 3 y</td>
<td>ND<sup>b</sup></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>4 through 8 y</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>9 through 13 y</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>> 18 y</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>19 through 50 y</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

^a AI = Adequate Intake: the observed average or experimentally determined intake by a defined population or subgroup that appears to sustain a defined nutritional status, such as growth rate, normal circulating nutrient values, or other functional indicators of health. The AI is used if sufficient scientific evidence is not available to derive an Estimated Average Requirement (EAR). For healthy infants receiving human milk, the AI is the mean intake. **The AI is not equivalent to a Recommended Dietary Allowance (RDA).**

^b ND = not determined.

where the presence of n-3 polyunsaturated fatty acid deficiency is nonexistent. The AI for α-linolenic acid is 1.6 and 1.1 g/d for men and women, respectively (Table S-6). Eicosapentaenoic acid and docosahexaenoic acid contribute approximately 10 percent of the total n-3 fatty acid intake and therefore this percent contributes toward the AI for α-linolenic acid.

Proteins form the major structural components of all the cells of the body. Along with amino acids, they function as enzymes, membrane carriers, and hormones. The RDA for both men and women is 0.8 g/kg of body weight/d of protein and is based on meta-analysis of nitrogen balance studies (Table S-7). Amino acids are dietary components of protein; nine amino acids are considered indispensable and thus dietary sources must be provided. The relative ratio of indispensable amino acids in a food protein and its digestibility determines the quality of the dietary protein (see Table S-8).
TABLE S-5 Criteria and Dietary Reference Intake Values for n-6 Polyunsaturated Fatty Acids (Linoleic Acid) by Life Stage Group

<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Criterion</th>
<th>AI (g/d)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 through 6 mo</td>
<td>Average consumption of total n-6 fatty acids from human milk</td>
<td>4.4</td>
</tr>
<tr>
<td>7 through 12 mo</td>
<td>Average consumption of total n-6 fatty acids from human milk and complementary foods</td>
<td>4.6</td>
</tr>
<tr>
<td>1 through 3 y</td>
<td>Median intake of linoleic acid from CSFII<sup>b</sup></td>
<td>7</td>
</tr>
<tr>
<td>4 through 8 y</td>
<td>Median intake of linoleic acid from CSFII</td>
<td>10</td>
</tr>
<tr>
<td>9 through 13 y</td>
<td>Median intake of linoleic acid from CSFII</td>
<td>12</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>Median intake of linoleic acid from CSFII</td>
<td>16</td>
</tr>
<tr>
<td>19 through 30 y</td>
<td>Median intake of linoleic acid from CSFII</td>
<td>17</td>
</tr>
<tr>
<td>31 through 50 y</td>
<td>Median intake of linoleic acid from CSFII for 19 to 30 y group</td>
<td>17</td>
</tr>
<tr>
<td>51 through 70 y</td>
<td>Median intake of linoleic acid from CSFII for 19 to 30 y group</td>
<td>14</td>
</tr>
<tr>
<td>> 70 y</td>
<td>Median intake of linoleic acid from CSFII for 51 through 70 y group</td>
<td>14</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Median intake of linoleic acid from CSFII for all pregnant women</td>
<td>13</td>
</tr>
<tr>
<td>Lactation</td>
<td>Median intake of linoleic acid from CSFII for all lactating women</td>
<td>13</td>
</tr>
</tbody>
</table>

^aAI = Adequate Intake: the observed average or experimentally determined intake by a defined population or subgroup that appears to sustain a defined nutritional status, such as growth rate, normal circulating nutrient values, or other functional indicators of health. The AI is used if sufficient scientific evidence is not available to derive an Estimated Average Requirement (EAR). For healthy infants receiving human milk, the AI is the mean intake. **The AI is not equivalent to a Recommended Dietary Allowance (RDA).**

^bCSFII = Continuing Survey of Food Intake by Individuals.
TABLE S-6 Criteria and Dietary Reference Intake Values for \(n \)-3 Polyunsaturated Fatty Acids (\(\alpha \)-Linolenic Acid) by Life Stage Group

<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Criterion</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 through 6 mo</td>
<td>Average consumption of total (n)-3 fatty acids from human milk</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>7 through 12 mo</td>
<td>Average consumption of total (n)-3 fatty acids from human milk and complementary foods</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1 through 3 y</td>
<td>Median intake of (\alpha)-linolenic acid from CSFII<sup>b</sup></td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>4 through 8 y</td>
<td>Median intake of (\alpha)-linolenic acid from CSFII</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>9 through 13 y</td>
<td>Median intake of (\alpha)-linolenic acid from CSFII</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>Median intake of (\alpha)-linolenic acid from CSFII</td>
<td>1.6</td>
<td>1.1</td>
</tr>
<tr>
<td>19 through 30 y</td>
<td>Highest median intake of (\alpha)-linolenic acid from CSFII for all adult age groups</td>
<td>1.6</td>
<td>1.1</td>
</tr>
<tr>
<td>31 through 50 y</td>
<td>Highest median intake of (\alpha)-linolenic acid from CSFII for all adult age groups</td>
<td>1.6</td>
<td>1.1</td>
</tr>
<tr>
<td>51 through 70 y</td>
<td>Highest median intake of (\alpha)-linolenic acid from CSFII for all adult age groups</td>
<td>1.6</td>
<td>1.1</td>
</tr>
<tr>
<td>> 70 y</td>
<td>Highest median intake of (\alpha)-linolenic acid from CSFII for all adult age groups</td>
<td>1.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Pregnancy

| 14 through 18 y | Median intake of \(\alpha \)-linolenic acid from CSFII for all pregnant women | 1.4 |
| 19 through 50 y | Median intake of \(\alpha \)-linolenic acid from CSFII for all pregnant women | 1.4 |

Lactation

| 14 through 18 y | Median intake of \(\alpha \)-linolenic acid from CSFII for all lactating women | 1.3 |
| 19 through 50 y | Median intake of \(\alpha \)-linolenic acid from CSFII for all lactating women | 1.3 |

^a AI = Adequate Intake: the observed average or experimentally determined intake by a defined population or subgroup that appears to sustain a defined nutritional status, such as growth rate, normal circulating nutrient values, or other functional indicators of health. The AI is used if sufficient scientific evidence is not available to derive an Estimated Average Requirement (EAR). For healthy infants receiving human milk, the AI is the mean intake. **The AI is not equivalent to a Recommended Dietary Allowance (RDA).**

^b CSFII = Continuing Survey of Food Intake by Individuals.
TABLE S-7 Criteria and Dietary Reference Intake Values for Protein by Life Stage Group

<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 through 6 mo</td>
<td>Average consumption of protein from human milk</td>
</tr>
<tr>
<td>7 through 12 mo</td>
<td>Nitrogen equilibrium plus protein deposition</td>
</tr>
<tr>
<td>1 through 3 y</td>
<td>Nitrogen equilibrium plus protein deposition</td>
</tr>
<tr>
<td>4 through 8 y</td>
<td>Nitrogen equilibrium plus protein deposition</td>
</tr>
<tr>
<td>9 through 13 y</td>
<td>Nitrogen equilibrium plus protein deposition</td>
</tr>
<tr>
<td>14 through 18 y</td>
<td>Nitrogen equilibrium plus protein deposition</td>
</tr>
<tr>
<td>> 18 y</td>
<td>Nitrogen equilibrium</td>
</tr>
</tbody>
</table>

Pregnancy

| 14 through 18 y | Nitrogen equilibrium plus protein deposition |
| 19 through 50 y | Nitrogen equilibrium plus protein deposition |

Lactation

| 14 through 18 y | Nitrogen equilibrium plus milk nitrogen |
| 19 through 50 y | Nitrogen equilibrium plus milk nitrogen |

*AI = Adequate Intake, RDA = Recommended Dietary Allowance. The AI is the observed average or experimentally determined intake by a defined population or subgroup that appears to sustain a defined nutritional status, such as growth rate, normal circulating nutrient values, or other functional indicators of health. It is used if sufficient scientific evidence is not available to derive an EAR. For healthy infants receiving human milk, the AI is the mean intake. The AI is not equivalent to an RDA. The RDA is the intake that meets the nutrient need of almost all (97–98 percent) individuals in a group.

*EAR = Estimated Average Requirement. The intake that meets the estimated nutrient needs of half the individuals in a group.

CRITERIA AND PROPOSED VALUES FOR TOLERABLE UPPER INTAKE LEVELS

A risk assessment model is used to derive Tolerable Upper Intake Levels (ULs). The model consists of a systematic series of scientific considerations and judgments. The hallmark of the risk assessment model is the requirement to be explicit in all of the evaluations and judgments made.

There were insufficient data to use the model of risk assessment to set a UL for total fat, monounsaturated fatty acids, n-6 and n-3 polyunsaturated fatty acids, protein, or amino acids. While increased serum low density lipoprotein cholesterol concentrations, and therefore risk of coronary heart disease, may increase at high intakes of saturated fatty acids, *trans* fatty acids, or cholesterol, a UL is not set for these fats because the level at which risk begins to increase is very low and cannot be achieved by usual
SUMMARY

It is thus recommended that saturated fatty acid, trans fatty acid, and cholesterol consumption be as low as possible while consuming a nutritionally adequate diet. Although there were insufficient data to set a UL for added sugars, a maximal intake level of 25 percent or less of energy is suggested to prevent the displacement of foods that are major sources of essential micronutrients (see Chapter 11).

Although a specific UL was not set for any of the macronutrients, the absence of definitive data does not signify that people can tolerate chronic intakes of these substances at high levels. Like all chemical agents, nutrients and other food components can produce adverse effects if intakes are excessive. Therefore, when data are extremely limited or conflicting, extra caution may be warranted in consuming levels significantly above that found in typical food-based diets.

<table>
<thead>
<tr>
<th>AI or RDA for Reference Individual(^a) (g/d)</th>
<th>EAR(^b) (g/kg/d)</th>
<th>RDA (g/kg/d)</th>
<th>AI (g/kg/d)(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>Females</td>
<td>Males</td>
<td>Females</td>
</tr>
<tr>
<td>9.1 (AI)</td>
<td>9.1 (AI)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>11.0</td>
<td>11.0</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>0.73</td>
<td>0.71</td>
</tr>
<tr>
<td>52</td>
<td>46</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>56</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(71^c)</td>
<td>0.88</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>0.88</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1.05</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1.05</td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) The EAR and RDA for pregnancy are only for the second half of pregnancy. For the first half of pregnancy, the protein requirements are the same as those of the non-pregnant woman.

\(^b\) NOTE: Due to a calculation error in the prepublication copy, values are changed for: RDA for reference infants 7 through 12 mo from 13.5 g/d to 11.0 g/d; EAR for infants 7 through 12 mo from 1.1 g/kg/d to 1.0 g/kg/d; RDA for infants 7 through 12 mo from 1.5 g/kg/d to 1.2 g/kg/d; EAR for children 1 through 3 y from 0.88 g/kg/d to 0.87 g/kg/d; RDA for children 1 through 3 y from 1.10 g/kg/d to 1.05 g/kg/d; RDA for lactating women from 1.1 g/kg/d to 1.3 g/kg/d.
ACCEPTABLE MACRONUTRIENT DISTRIBUTION RANGES FOR HEALTHY DIETS

Dietary Reference Intakes have been set for carbohydrate, n-6 and n-3 polyunsaturated fatty acids, protein, and amino acids based on controlled studies in which the actual amount of nutrient provided or utilized is known, or based on median intakes from national survey data. A growing body of evidence has shown that macronutrients, particularly fats and carbohydrate, play a role in the risk of chronic diseases.

Although various guidelines have been established that suggest a maximal intake level of fat and fatty acids (e.g., American Heart Association [Krauss et al., 1996], Dietary Guidelines for Americans [USDA/HHS, 2000]), the scientific evidence suggests that individuals can consume moderate levels without risk of adverse health effects, while increased risk may occur with the chronic consumption of diets that are too low or too high in these macronutrients. Much of this evidence is based on clinical endpoints (e.g., risk of coronary heart disease (CHD), diabetes, cancer, and obesity), which are associations rather than distinct endpoints. Furthermore, because there may be factors other than diet that may contribute to chronic diseases, it is not possible to determine a defined level of intake at which chronic diseases may be prevented or may develop.

Based on the evidence to suggest a role in chronic diseases, as well as information to ensure sufficient intakes of essential nutrients, Acceptable Macronutrient Distribution Ranges (AMDR) have been estimated for individuals (see Chapter 11). An AMDR is defined as a range of intakes for a particular energy source that is associated with reduced risk of chronic

TABLE S-8 FNB/IOM Protein Quality Scoring Pattern (mg/g protein)

<table>
<thead>
<tr>
<th>Indispensable Amino Acid</th>
<th>Recommended FNB/IOM Patterna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histidine</td>
<td>18</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>25</td>
</tr>
<tr>
<td>Leucine</td>
<td>55</td>
</tr>
<tr>
<td>Lysine</td>
<td>51</td>
</tr>
<tr>
<td>Methionine + cysteine</td>
<td>25</td>
</tr>
<tr>
<td>Phenylalanine + tyrosine</td>
<td>47</td>
</tr>
<tr>
<td>Threonine</td>
<td>27</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>7</td>
</tr>
<tr>
<td>Valine</td>
<td>32</td>
</tr>
</tbody>
</table>

a Based on Estimated Average Requirements for 1- to 3-year-old children for both indispensable amino acids and total protein.
diseases while providing adequate intakes of essential nutrients. The AMDR is expressed as a percentage of total energy intake because its requirement, in a classical sense, is not independent of other energy fuel sources or of the total energy requirement of the individual. Each must be expressed in terms relative to each other. A key feature of each AMDR is that it has a lower and upper boundary, some determined mainly by the lowest or highest value judged to have an expected impact on health. If an individual consumes below or above this range, there is a potential for increasing the risk of chronic diseases shown to affect long-term health, as well as increasing the risk of insufficient intakes of essential nutrients.

When fat intakes are low and carbohydrate intakes are high, intervention studies, with the support of epidemiological studies, demonstrate a reduction in plasma high density lipoprotein (HDL) cholesterol concentration, an increase in the plasma total cholesterol:HDL cholesterol ratio, and an increase in plasma triacylglycerol concentration, all consistent with an increased risk of CHD. Conversely, interventional studies show that when fat intakes are high, many individuals gain additional weight. Weight gain on high fat diets can be detrimental to individuals already susceptible to obesity and will worsen the metabolic consequences of obesity, particularly risk of CHD. Moreover, high fat diets are usually accompanied by increased intakes of saturated fatty acids, which can raise plasma low density lipoprotein cholesterol concentrations and further heighten risk for CHD. Based on the apparent risk for CHD that may occur on both low and high fat diets, and the increased risk for CHD at higher carbohydrate intakes, an AMDR for fat and carbohydrate is estimated to be 20 to 35 and 45 to 65 percent of energy, respectively, for all adults. By consuming fat and carbohydrate within these ranges, the risk for CHD, as well as obesity and diabetes, may be kept at a minimum. Furthermore, these ranges allow for sufficient intakes of essential nutrients, while keeping the intake of saturated fat at moderate levels. To complement these ranges, the AMDR for protein is 10 to 35 percent of energy.

Based on usual median intakes of energy, it is estimated that a lower boundary level of 5 percent of energy will meet the Adequate Intake (AI) for linoleic acid (Chapter 8). An upper boundary for linoleic acid is set at 10 percent of energy for three reasons: (1) individual dietary intakes of linoleic acid in the North American population rarely exceed 10 percent of energy, (2) epidemiological evidence for safety of intakes greater than 10 percent of energy are generally lacking, and (3) high intakes of linoleic acid create a pro-oxidant state that may predispose to several chronic diseases, such as CHD and cancer. Therefore, an AMDR of 5 to 10 percent of energy is suggested for linoleic acid.

The AMDR for α-linolenic acid is set at 0.6 to 1.2 percent of energy. Ten percent of this range can be consumed as eicosapentaenoic acid
(EPA) and/or docosahexaenoic acid (DHA). The lower boundary of the range meets the AI for α-linolenic acid (Chapter 8). The upper boundary corresponds to the highest intakes from foods consumed by individuals in the United States and Canada. A growing body of literature suggests that diets higher in α-linolenic acid, EPA, and DHA may afford some degree of protection against CHD. Because the physiological potency of EPA and DHA is much greater than that for α-linolenic acid, it is not possible to estimate one AMDR for all n-3 fatty acids.

No more than 25 percent of energy from added sugars should be consumed. This maximal intake level is based on ensuring sufficient intakes of essential micronutrients that are, for the most part, present in relatively low amounts in foods and beverages that are major sources of added sugars in North American diets.

USING DIETARY REFERENCE INTAKES TO ASSESS NUTRIENT INTAKES OF GROUPS

Suggested uses of Dietary Reference Intakes (DRIs) appear in Box S-2. The transition from using previously published Recommended Dietary Allowances (RDAs) and Reference Nutrient Intakes (RNIs) to using each of the DRIs appropriately will require time and effort by health professionals and others.

For statistical reasons that are addressed briefly in Chapter 13 and in more detail in the report *Dietary Reference Intakes: Applications in Dietary Assessment* (IOM, 2000), the Estimated Average Requirement (EAR) is the appropriate reference intake to use in assessing the nutrient intake of groups, whereas the RDA is not. When assessing nutrient intakes of groups, it is important to consider the variation in intake in the same individuals from day to day, as well as underreporting. With these considerations, the prevalence of inadequacy for a given nutrient may be estimated by using national survey data and determining the percentage of the population below the EAR (see Chapter 13).

Assuming a normal distribution of requirements, the percentage of surveyed individuals whose intake is less than the EAR equals the percentage of individuals whose diets are considered inadequate based on the criteria of inadequacy chosen to determine the requirement. For example, intake data from the Continuing Survey of Food Intakes by Individuals (1994–1996, 1998), which collected 24-hour diet recalls for 1 or 2 days, indicate that:

- Less than 5 percent of adults at that time consumed dietary carbohydrate at a level less than the EAR.
BOX S-2
Uses of Dietary Reference Intakes for Healthy Individuals and Groups

<table>
<thead>
<tr>
<th>Type of Use</th>
<th>For an Individual(^a)</th>
<th>For a Group(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment</td>
<td>EAR: use to examine the probability that usual intake is inadequate.</td>
<td>EAR: use to estimate the prevalence of inadequate intakes within a group.</td>
</tr>
<tr>
<td></td>
<td>EER: use to examine the probability that usual energy intake is inadequate.</td>
<td>EER: use to estimate the prevalence of inadequate energy intakes within a group.</td>
</tr>
<tr>
<td></td>
<td>RDA: usual intake at or above this level has a low probability of inadequacy.</td>
<td>RDA: do not use to assess intakes of groups.</td>
</tr>
<tr>
<td></td>
<td>AI: usual intake at or above this level has a low probability of inadequacy.</td>
<td>AI: mean usual intake at or above this level implies a low prevalence of inadequate intakes.</td>
</tr>
<tr>
<td></td>
<td>UL: usual intake above this level may place an individual at risk of adverse effects from excessive nutrient intake.</td>
<td>UL: use to estimate the percentage of the population at potential risk of adverse effects from excess nutrient intake.</td>
</tr>
<tr>
<td>Planning</td>
<td>RDA: aim for this intake.</td>
<td>EAR: use to plan an intake distribution with a low prevalence of inadequate intakes.</td>
</tr>
<tr>
<td></td>
<td>AI: aim for this intake.</td>
<td>EER: use to plan an energy intake distribution with a low prevalence of inadequate intakes.</td>
</tr>
<tr>
<td></td>
<td>UL: use as a guide to limit intake; chronic intake of higher amounts may increase the potential risk of adverse effects.</td>
<td>AI: use to plan mean intakes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UL: use to plan intake distributions with a low prevalence of intakes potentially at risk of adverse effects.</td>
</tr>
</tbody>
</table>

RDA = Recommended Dietary Allowance
EER = Estimated Energy Requirement
EAR = Estimated Average Requirement
AI = Adequate Intake
UL = Tolerable Upper Level

\(^a\) Evaluation of true status requires clinical, biochemical, and anthropometric data.
\(^b\) Requires statistically valid approximation of distribution of usual intakes.
\(^c\) For the nutrients in this report, AIs are set for infants for all nutrients, and for other age groups for fiber and n-6 and n-3 fatty acids. The AI may be used as a guide for infants as it reflects the average intake from human milk. Infants consuming formulas with the same nutrient composition as human milk are consuming an adequate amount after adjustments are made for differences in bioavailability. When the AI for a nutrient is not based on mean intakes of healthy populations, this assessment is made with less confidence.
\(^d\) The EER may be used as the EAR for these applications.
• Less than 5 percent of children and adults consumed protein at levels less than the EAR.
• Less than 5 percent of adults consumed Dietary Fiber at levels greater than the AI.

RESEARCH RECOMMENDATIONS

Four major types of information gaps were noted: (1) a lack of data designed specifically to estimate average requirements for fiber and fat in presumably healthy humans, (2) a lack of data on the needs of macronutrients of infants, children, adolescents, the elderly, and pregnant women, (3) a lack of multidose, long-term studies to determine the role of specific macronutrients in reducing the risk of certain chronic diseases, and (4) a lack of studies designed to detect adverse effects of chronic high intakes of specific macronutrients.

Highest priority is thus given to studies that address the following research topics:

• long-term, dose–response studies to help identify the requirement of individual macronutrients that are essential in the diet (e.g., essential amino acids and n-6 and n-3 polyunsaturated fats) for all life stage and gender groups. It is recognized that it is not possible to identify a defined intake level of fat for maintaining health and decreasing risk of disease; however, it is recognized that further information is needed to identify acceptable ranges of intake for fat, as well as for protein and carbohydrate that are based on prevention of chronic diseases and maintaining health;
• studies to further understand the beneficial roles of Dietary and Functional Fibers in human health;
• studies during pregnancy designed to determine protein and energy needs;
• information on the form, frequency, intensity, and duration of exercise and physical activity that is successful in managing body weight in both children and adults;
• long-term studies on the role of glycemic response in preventing chronic diseases, such as diabetes and coronary heart disease, in healthy individuals, and;
• studies to investigate the levels at which adverse effects occur with chronic high intakes of specific macronutrients. For some nutrients, such as saturated fat and cholesterol, biochemical indicators of adverse effects can occur at very low intakes. Thus, more information is needed to ascertain defined levels of intakes at which onset of relevant health risks (e.g., obesity, coronary heart disease, and diabetes) occur.
SUMMARY

REFERENCES

Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients)

Dietary Reference Intakes

FOR

Energy, Carbohydrate,
Fiber, Fat, Fatty Acids,
Cholesterol, Protein,
and Amino Acids

Food and Nutrition Board

INSTITUTE OF MEDICINE

OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS

Washington, D.C.

www.nap.edu
“Knowing is not enough; we must apply.
Willing is not enough; we must do.”

—Goethe
PANEL ON DIETARY REFERENCE INTAKES FOR MACRONUTRIENTS

JOANNE R. LUPTON (Chair), Faculty of Nutrition, Texas A&M University, College Station
GEORGE A. BROOKS, Department of Integrative Biology, University of California, Berkeley
NANCY F. BUTTE, Department of Pediatrics, U.S. Department of Agriculture/Agriculture Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas
BENJAMIN CABALLERO, Center for Human Nutrition, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
JEAN PIERRE FLATT, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester
SUSAN K. FRIED, Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
PETER J. GARLICK, Department of Surgery, State University of New York at Stony Brook
SCOTT M. GRUNDY, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas
SHEILA M. INNIS, BC Research Institute for Children’s and Women’s Health, University of British Columbia, Vancouver
DAVID J.A. JENKINS, Department of Nutritional Sciences, University of Toronto, Ontario
RACHEL K. JOHNSON, Department of Nutrition and Food Sciences, University of Vermont, Burlington
RONALD M. KRAUSS, Department of Molecular Medicine, Lawrence Berkeley National Laboratory, University of California, Berkeley
PENNY KRIS-ETHERTON, Department of Nutrition, Pennsylvania State University, University Park
ALICE H. LICHTENSTEIN, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
FRANK Q. NUTTALL, Department of Medicine, University of Minnesota School of Medicine, Minneapolis
PAUL B. PENCHARZ, Departments of Pediatrics and Nutritional Sciences, University of Toronto, Ontario
F. XAVIER PI-SUNYER, Department of Medicine, Columbia University, New York
WILLIAM M. RAND, Department of Family Medicine and Community Health, Tufts University School of Medicine, Boston, Massachusetts
PETER J. REEDS (deceased), Department of Animal Sciences, University of Illinois at Urbana-Champaign
ERIC B. RIMM, Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts
SUSAN B. ROBERTS, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
Staff

PAULA R. TRUMBO, Study Director
SANDRA SCHLICKER, Senior Program Officer
ALICE L. VOROSMARTI, Research Associate
KIMBERLY STITZEL, Research Assistant (until January 2001)
CARRIE L. HOLLOWAY, Research Assistant
GAIL E. SPEARS, Staff Editor
SANDRA AMAMOO-KAKRA, Senior Project Assistant
MICHELE RAMSEY, Senior Project Assistant (until June 2001)
PANEL ON THE DEFINITION OF DIETARY FIBER

JOANNE R. LUPTON (Chair), Faculty of Nutrition, Texas A&M University, College Station

GEORGE C. FAHEY, Department of Animal Sciences, University of Illinois at Urbana-Champaign

DAVID J.A. JENKINS, Department of Nutritional Sciences, University of Toronto, Ontario

JUDITH A. MARLETT, Department of Nutritional Science, University of Wisconsin-Madison

JOANNE L. SLAVIN, Department of Food Science and Nutrition, University of Minnesota, St. Paul

JON A. STORY, Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana

CHRISTINE L. WILLIAMS, Department of Pediatrics, Columbia University, New York

Consultants

LEON PROSKY, Prosky Associates, Rockville, Maryland

ALISON STEPHEN, CanTox, Inc., Mississauga, Ontario

Staff

PAULA R. TRUMBO, Study Director

ALICE L. VOROSMARTI, Research Associate

KIMBERLY STITZEL, Research Assistant (until January 2001)

CARRIE L. HOLLOWAY, Research Assistant

GAIL E. SPEARS, Staff Editor

SANDRA AMAMOO-KAKRA, Senior Project Assistant

MICHELE RAMSEY, Senior Project Assistant (until June 2001)
SUBCOMMITTEE ON UPPER REFERENCE LEVELS OF NUTRIENTS

IAN C. MUNRO (Chair through December 2001), CanTox, Inc., Mississauga, Ontario, Canada
JOSEPH V. RODRICKS (Chair beginning January 2002), ENVIRON International Corporation, Arlington, Virginia
G. HARVEY ANDERSON, Department of Nutritional Sciences, University of Toronto, Ontario
GEORGE C. BECKING, Phoenix OHC, Kingston, Ontario
ELAINE FAUSTMAN, Department of Environmental Health, University of Washington, Seattle
SUZANNE HENDRICH, Department of Food Science and Human Nutrition, Iowa State University, Ames
SANFORD A. MILLER, Center for Food and Nutrition Policy, Virginia Polytechnic Institute and State University, Alexandria
HARRIS PASTIDES, School of Public Health, University of South Carolina, Columbia
JOHN A. THOMAS, San Antonio, Texas
GARY M. WILLIAMS, Department of Environmental Pathology and Toxicology, New York Medical College, Valhalla, New York

Staff

SANDRA SCHLICKER, Study Director
SANDRA AMAMOO-KAKRA, Senior Project Assistant
SUBCOMMITTEE ON INTERPRETATION AND USES OF DIETARY REFERENCE INTAKES

SUSAN I. BARR (Chair), Department of Food, Nutrition, and Health, University of British Columbia, Vancouver
TANYA D. AGURS-COLLINS, Department of Oncology, Howard University Cancer Center, Washington, D.C.
ALICIA CARRIQUIRY, Department of Statistics, Iowa State University, Ames
ANN M. COULSTON, Hattner/Coulston Nutrition Associates, LLC., Palo Alto, California
BARBARA L. DEVANEY, Mathematica Policy Research, Princeton, New Jersey
JANET HUNT, U.S. Department of Agriculture/Agriculture Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota
SUZANNE MURPHY, Cancer Research Center of Hawaii, University of Hawaii, Honolulu
VALERIE TARASUK, Department of Nutritional Sciences, University of Toronto, Ontario

Staff

MARY POOS, Study Director
ALICE L. VOROSMARTI, Research Associate
HARLEEN SETHI, Project Assistant
STANDING COMMITTEE ON THE SCIENTIFIC EVALUATION OF DIETARY REFERENCE INTAKES

VERNON R. YOUNG (Chair through April 2002), Laboratory of Human Nutrition, School of Science, Massachusetts Institute of Technology, Cambridge

JOHN W. ERDMAN, JR. (Vice-Chair), Department of Food Science and Human Nutrition, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign

LINDSAY H. ALLEN, Department of Nutrition, University of California, Davis

STEPHANIE A. ATKINSON, Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario

JOHN D. FERNSTROM, UMPC Health System Weight Management Center, University of Pittsburgh School of Medicine, Pennsylvania

SCOTT M. GRUNDY, Center for Human Nutrition, University of Texas Southwestern Medical Center at Dallas

SANFORD A. MILLER, Center for Food and Nutrition Policy, Virginia Polytechnic Institute and State University, Alexandria

WILLIAM M. RAND, Department of Family Medicine and Community Health, Tufts University School of Medicine, Boston, Massachusetts

ROBERT M. RUSSELL, Jean Mayer U.S. Department of Agriculture Research Center on Aging, Tufts University, Boston, Massachusetts

Technical Advisor to the DRI Projects

GEORGE BEATON, GHB Consulting, Willowdale, Ontario

U.S. Government Liaison

KATHRYN Y. McMURRY, Office of Disease Prevention and Health Promotion, U.S. Department of Health and Human Services, Washington, D.C.

Canadian Government Liaison

PETER W.F. FISCHER, Nutrition Research Division, Health Protection Branch, Health Canada, Ottawa, Ontario

Copyright National Academy of Sciences. All rights reserved.
This summary plus thousands more available at http://www.nap.edu
Staff

ALLISON A. YATES, Study Director
MARY POOS, Senior Program Officer
SANDRA SCHLICKER, Senior Program Officer
PAULA R. TRUMBO, Senior Program Officer
ALICE L. VOROSMARTI, Research Associate
CARRIE L. HOLLOWAY, Research Assistant
GAIL E. SPEARS, Staff Editor
SANDRA AMAMOO-KAKRA, Senior Project Assistant
FOOD AND NUTRITION BOARD*

CUTBERTO GARZA (Chair), Department of Nutrition Sciences, Cornell University, Ithaca, New York
ROBERT M. RUSSELL (Vice-Chair), Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
VIRGINIA A. STALLINGS (Vice-Chair), Division of Gastroenterology and Nutrition, The Children’s Hospital of Philadelphia, Pennsylvania
LARRY R. BEUCHAT, Center for Food Safety and Quality Enhancement, University of Georgia, Griffin
BENJAMIN CABALLERO, Center for Human Nutrition, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
ROBERT J. COUSINS, Center for Nutritional Sciences, University of Florida, Gainesville
SHIRIKI KUMANYIKA, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia
LYNN PARKER, Child Nutrition Programs and Nutrition Policy, Food Research and Action Center, Washington, D.C.
ROSS L. PRENTICE, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
A. CATHARINE ROSS, Department of Nutrition, Pennsylvania State University, University Park
BARBARA O. SCHNEEMAN, Department of Nutrition, University of California, Davis
ROBERT E. SMITH, R.E. Smith Consulting, Inc., Newport, Vermont
STEVE L. TAYLOR, Department of Food Science and Technology and Food Processing Center, University of Nebraska, Lincoln
CATHERINE E. WOTEKI, Iowa Agriculture and Human Economics Experiment Station, Iowa State University, Ames
BARRY L. ZOUMAS, Department of Agricultural Economics and Rural Sociology, Pennsylvania State University, University Park

Staff

ALLISON A. YATES, Director
LINDA MEYERS, Deputy Director
GAIL E. SPEARS, Administrative Assistant
GERALDINE KENNEDO, Administrative Assistant
GARY WALKER, Financial Analyst

*At time of release of prepublication copy.
Dedication

The Panel on Macronutrients dedicates this report to the late Peter Reeds, a diligent and enthusiastic member of the panel who made significant contributions to this study. His expertise in protein and amino acid metabolism was a special asset to the panel’s work, as well as a contribution to the understanding of protein and amino acid requirements.
Preface

This report is one in a series that presents a comprehensive set of reference values for nutrient intakes for healthy U.S. and Canadian individuals and populations. It is a product of the Food and Nutrition Board of the Institute of Medicine (IOM), working in cooperation with Canadian scientists.

The report establishes a set of reference values for dietary energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids to expand and replace previously published Recommended Dietary Allowances (RDAs) and Recommended Nutrient Intakes (RNIs) for the United States and Canada, respectively. Close attention was given throughout the report to the evidence relating macronutrient intakes to risk reduction of chronic disease and to amounts needed to maintain health. Thus, the report includes guidelines for partitioning energy sources (Acceptable Macronutrient Distribution Ranges) compatible with decreasing risks of various chronic diseases. It also provides a definition for dietary fiber.

The groups responsible for developing this report, the Panel on Macronutrients, the Panel on the Definition of Dietary Fiber, the Subcommittee on Upper Reference Levels of Nutrients (UL Subcommittee), the Subcommittee on Interpretation and Uses of Dietary Reference Intakes (Uses Subcommittee), and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (DRI Committee), have analyzed the evidence on risks and beneficial effects of nutrients and other food components included in this review.

Although all reference values are based on data, available data were often sparse or drawn from studies with significant limitations in address-
ing various questions confronted by the panel and subcommittees. Thus, although governed by scientific rationales, informed judgments were often required in setting reference values. The reasoning used for each nutrient is described in Chapters 5 through 11. Chapter 13 addresses major conceptual issues related to the uses of the DRIs that were included in the early stages of the DRI process and have been developed further by the Uses Subcommittee.

The quality and quantity of information on overt deficiency diseases for protein, amino acids, and essential fatty acids available to the committee were substantial. Unfortunately, information regarding other nutrients for which their primary dietary importance relates to their roles as energy sources was limited most often to alterations in chronic disease biomarkers that follow dietary manipulations of energy sources.

Given the uniqueness of the nutrients considered in this report (i.e., they or their precursors serve as energy sources and, for this purpose, can substitute for each other in the diet), the inability to determine an Estimated Average Requirement (EAR) or a Tolerable Upper Intake Level (UL) in many cases is not surprising. Also, for most of the nutrients in this report (with a notable exception of protein and some amino acids), there is no direct information that permits estimating the amounts required by children, adolescents, the elderly, or pregnant and lactating women. Similarly, data were exceptionally sparse for setting ULs for the macronutrients. Dose–response studies were either not available or were suggestive of very low intake levels that could result in inadequate intakes of other nutrients. These information gaps and inconsistencies often precluded setting reliable estimates of upper intake levels that can be ingested safely.

The report’s attention to energy would be incomplete without its substantial review of the role of daily physical activity in achieving and sustaining fitness and optimal health (Chapter 12). The report provides recommended levels of energy expenditure that are considered most compatible with minimizing risks of several chronic diseases and provides guidance for achieving recommended levels of energy expenditure. Inclusion of these recommendations avoids the tacit false assumption that light sedentary activity is the expected norm in the United States and Canada.

Readers are urged to recognize that the Dietary Reference Intakes (DRI) process is iterative in character. The Food and Nutrition Board and the DRI Committee and its subcommittees and panels fully expect that the DRI conceptual framework will evolve and be improved as novel information becomes available and is applied to an expanding list of nutrients and other food components. Thus, because the DRI activity is ongoing, comments were solicited widely and received on the published reports of this series. Refinements that resulted from this iterative process were included in the general information regarding approaches used (Chapters 1
through 4) and in the discussion of uses of DRIs (Chapter 13). With more experience, the proposed models for establishing reference intakes of nutrients and other food components that play significant roles in promoting and sustaining health and optimal functioning will be refined. Also, as new information or new methods of analysis are adopted, these reference values undoubtedly will be reassessed.

Many of the questions that were raised about requirements and recommended intakes could not be answered satisfactorily for the reasons given above. Thus, among the panel’s major tasks was to outline a research agenda addressing information gaps uncovered in its review (Chapter 14). The research agenda is anticipated to help future policy decisions related to these and future recommendations. This agenda and the critical, comprehensive analyses of available information are intended to assist the private sector, foundations, universities, governmental and international agencies and laboratories, and other institutions in the development of their respective research priorities for the next decade.

This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the NRC’s Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report:

Arne Astrup, The Royal Veterinary and Agricultural University; George Blackburn, Beth Israel Deaconess Medical Center; Elsworth Buskirk, Pennsylvania State University; William Connor, Oregon Health and Science University; John Hathcock, Council for Responsible Nutrition; Satish Kalhan, Case Western Reserve University School of Medicine; Martijn Katan, Wageningen Agricultural University; David Kritchevsky, The Wistar Institute; Shiriki Kumanyika, University of Pennsylvania School of Medicine; William Lands, National Institutes of Health; Geoffrey Livesey, Independent Nutrition Logic; Ross Prentice, Fred Hutchinson Cancer Research Center; Barbara Schneeman, University of California, Davis; Christopher Sempos, State University of New York, Buffalo; Virginia Stallings, Children’s Hospital of Philadelphia; Steve Taylor, University of Nebraska; Daniel Tomé, Institut National Agronomique Paris-Grinon; and Walter Willett, Harvard School of Public Health.
Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations nor did they see the final draft of the report before its release. The review of this report was overseen by Catherine Ross, Pennsylvania State University and Irwin Rosenberg, Tufts University, appointed by the Institute of Medicine, who were responsible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution.

The Food and Nutrition Board gratefully acknowledges the Canadian government’s support and Canadian scientists’ participation in this initiative. This close collaboration represents a pioneering first step in the harmonization of nutrient reference intakes in North America. A description of the overall DRI project and of the panel’s task is given in Appendix B.

The Food and Nutrition Board joins the DRI Committee, the Panel on Macronutrients, the Panel on the Definition of Dietary Fiber, the UL Subcommittee, and the Uses Subcommittee in extending sincere appreciation to the many experts who assisted with this report by giving presentations to the various groups charged with its development, providing written materials, participating in the groups’ open discussions, analyzing data, and other means. Many, but far from all, of these individuals are named in Appendix C. Special gratitude is extended to the staff at ENVIRON International Corporation for providing national survey data.

The respective chairs and members of the Panel on Macronutrients and subcommittees performed their work under great time pressures. Their dedication made the report’s timely completion possible. All gave their time and hard work willingly and without financial reward; the public and the science and practice of nutrition are among the major beneficiaries of their dedication. The Food and Nutrition Board thanks these individuals, and especially the staff responsible for its development—in particular, Paula Trumbo for coordinating this complex report, and Sandra Schlicker, who served as a program officer for the study. The intellectual and managerial contributions made by these individuals to the report’s comprehensiveness and scientific base were critical to fulfilling the project’s mandate. Sincere thanks also go to other FNB staff, including Alice Vorosmarti, Kimberly Stitzel, Carrie Holloway, Gail Spears, Sandra Amamoo-Kakra, and Michele Ramsey, all of whom labored over nearly three years of work to complete this document.

And last, but certainly not least, the Food and Nutrition Board wishes to extend special thanks to Sandy Miller, who initially served as chair of the Panel on Macronutrients; Joanne Lupton, who subsequently assumed the role of chair of the panel and continued in that role through the
study’s completion; and Vernon Young, who served as chair of the DRI Committee since the inception of the overall DRI activity. Professor Young’s dedication to this and earlier DRI activities and his uncompromising standards for scientific rigor are most gratefully acknowledged.

Cutberto Garza
Chair, Food and Nutrition Board
Contents

SUMMARY

1 INTRODUCTION TO DIETARY REFERENCE INTAKES 21
 What Are Dietary Reference Intakes? 21
 Categories of Dietary Reference Intakes, 22
 Determination of Adequacy, 28
 Parameters for Dietary Reference Intakes, 29
 Summary, 36
 References, 36

2 METHODS AND APPROACHES USED 38
 Overview, 38
 Types of Data Used, 39
 Methods to Determine the Adequate Intake for Infants, 44
 Methods to Determine the Dietary Requirements for Children and Adults, 46
 Estimates of Nutrient Intake, 48
 Dietary Intakes in the United States and Canada, 49
 Summary, 50
 References, 50

3 RELATIONSHIP OF MACRONUTRIENTS AND PHYSICAL ACTIVITY TO CHRONIC DISEASE 53
 Overview, 53
 Cancer, 53
 Heart Disease, 57
xxii CONTENTS

Dental Caries, 61
Type 2 Diabetes Mellitus, 62
Obesity, 64
Skeletal Health, 66
Summary, 66
References, 66

4 A MODEL FOR THE DEVELOPMENT OF TOLERABLE UPPER INTAKE LEVELS 84
Background, 84
A Model for the Derivation of Tolerable Upper Intake Levels, 85
Risk Assessment and Food Safety, 86
Application of the Risk Assessment Model to Nutrients, 91
Steps in the Development of the Tolerable Upper Intake Level, 94
Intake Assessment, 104
Risk Characterization, 104
References, 105

5 ENERGY 107
Summary, 107
Background Information, 108
Selection of Indicators for Estimating the Requirement for Energy, 117
Factors Affecting Energy Expenditure and Requirements, 131
Approach Used to Determine Total Energy Expenditure, 151
Findings by Life Stage and Gender Group, 164
Adverse Effects of Overconsumption of Energy, 223
Research Recommendations, 225
References, 240

6 DIETARY CARBOHYDRATES: SUGARS AND STARCHES 265
Summary, 265
Background Information, 265
Evidence Considered for Estimating the Average Requirement for Carbohydrate, 277
Findings by Life Stage and Gender Group, 280
Intake of Carbohydrates, 294
Adverse Effects of Overconsumption, 295
Research Recommendations, 323
References, 324
CONTENTS

7 DIETARY, FUNCTIONAL, AND TOTAL FIBER 339
 Summary, 339
 Background Information, 340
 Evidence Considered for Estimating the Requirement for
 Dietary Fiber and Functional Fiber, 362
 Findings by Life Stage and Gender Group, 384
 Intake of Dietary Fiber, 390
 Adverse Effects of Overconsumption, 391
 Research Recommendations, 399
 References, 400

8 DIETARY FATS: TOTAL FAT AND FATTY ACIDS 422
 Summary, 422
 Background Information, 424
 Evidence Considered for Estimating the Requirements for
 Total Fat and Fatty Acids, 440
 Factors Affecting the Requirements, 447
 Findings by Life Stage and Gender Group, 456
 Intakes of Total Fat and Fatty Acids, 473
 Adverse Effects of Overconsumption, 481
 Research Recommendations, 505
 References, 515

9 CHOLESTEROL 542
 Summary, 542
 Background Information, 543
 Findings by Life Stage and Gender Group, 546
 Intake of Cholesterol, 549
 Adverse Effects of Overconsumption, 549
 Risk Characterization, 573
 Research Recommendations, 574
 References, 578

10 PROTEIN AND AMINO ACIDS 589
 Summary, 589
 Background Information, 590
 Selection of Indicators for Estimating the Requirement for
 Protein (Nitrogen), 610
 Selection of Indicators for Estimating the Requirement for
 Individual Amino Acids, 613
 Findings by Life Stage and Gender Group for Total Protein, 619
 Findings by Life Stage and Gender Group for Indispensable
 Amino Acids, 662
xxiv CONTENTS

Intake of Total Protein and Amino Acids, 682
Tolerable Upper Intake Levels for Protein, 692
Tolerable Upper Intake Levels for Individual Amino Acids, 695
Research Recommendations, 737
References, 738

11 MACRONUTRIENTS AND HEALTHFUL DIETS 769
Summary, 769
Introduction, 770
Dietary Fat and Carbohydrate, 772
n-9 Monounsaturated Fatty Acids, 816
n-6 Polyunsaturated Fatty Acids, 820
n-3 Polyunsaturated Fatty Acids, 826
Saturated Fatty Acids, *Trans* Fatty Acids, and Cholesterol, 835
Conjugated Linoleic Acid, 836
Dietary Fiber and Functional Fiber, 838
Dietary Protein, 839
References, 845

12 PHYSICAL ACTIVITY 880
Summary, 880
Background Information, 881
Physical Activity Level and Energy Balance, 884
Evidence for Healthful Effects of Physical Activity, 912
Balance of Carbohydrate and Lipid Oxidation During Exercise and Recovery, 917
Physical Fitness, 923
Adverse Effects of Excessive Physical Activity, 926
Research Recommendations, 929
References, 929

13 APPLICATIONS OF DIETARY REFERENCE INTAKES FOR MACRONUTRIENTS 936
Overview, 936
Assessing Nutrient Intakes of Individuals, 937
Assessing Nutrient Intakes of Groups, 941
Planning Nutrient Intakes of Individuals, 946
Planning Nutrient Intakes of Groups, 947
Nutrient-Specific Considerations, 949
Integrated Example, 963
Summary, 964
References, 965
CONTENTS

14 A RESEARCH AGENDA 968
 Approach, 968
 Major Knowledge Gaps, 969
 The Research Agenda, 971

APPENDIXES
A Glossary and Acronyms 973
B Origin and Framework of the Development of Dietary Reference Intake 978
C Acknowledgments 985
D Dietary Intake Data from the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994 988
E Dietary Intake Data from the Continuing Survey of Food Intakes by Individuals (CSFII), 1994–1996, 1998 1028
F Canadian Dietary Intake Data, 1990–1997 1066
G Special Analyses for Dietary Fats 1076
H Body Composition Data Based on the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994 1078
I Doubly Labeled Water Data Used to Predict Energy Expenditure 1104
J Association of Added Sugars Intake and Intake of Other Nutrients, 1203
K Data Comparing Carbohydrate Intake to Intake of Other Nutrients from the Continuing Survey of Food Intakes by Individuals (CSFII), 1994–1996, 1998 1226
L Options for Dealing with Uncertainties 1244
M Nitrogen Balance Studies Used to Estimate the Protein Requirements in Adults 1250

BIOGRAPHICAL SKETCHES OF PANEL AND SUBCOMMITTEE MEMBERS 1259

INDEX 1275

SUMMARY TABLES, DIETARY REFERENCE INTAKES 1319